
Yefim S. answered 12/03/21
Math Tutor with Experience
Let (x, y,z) is vertex of ellipsoid in 1st octant. Then volume V = 2x·2y·2z = 8xyz.
Now z = 6(1 - x2/9 - y2/16)1/2. So, volume V(x,y) = 48xy(1- x2/9 - y2/16)1/2.
∂V/∂x = 48y(1 - x2/9 - y2/16)1/2 - 16/3x2y(1 - x2/9 - y2/16)-1/2 = 0;
∂V/dy = 48x(1 - x2/9 - y2/16)1/2 - 3xy2(1 - x2/9 - y2/16)-1/2 = 0
48y(1 - x2/9 - y2/16)1/2 = 16/3x2y(1 - x2/9 - y2/16)-1/2
48x(1 - x2/9 - y2/16)1/2 = 3xy2(1 - x2/9 - y2/16)-1/2.
By division we get: y/x = 16/9x/y or y2 = 16/9x2 and y = 4/3x;
48x(1 - x2/9 - x2/9) = 3x·16/9x2; 9x(1 - 2x2/9) = x3; x = 0 or 9 - 2x2 = x2; x2 = 3, x = √3. then y = 4√ 3/3
and z = 6(1 - 1/3 - 1/3)1/2 = 2√3.
Then V = 8√3·4√3/3·2√3 = 64√3.
If x = 0 then V = 0 < 64√3