The graph should look like this:
y = 7-4x2
0 = 7-4x2
4x2= 7
x2= 7/4
x= ±√7 / 2 ≈ ± 1.323
The area of the region (A) is the definite integral ∫ab f(x) dx. In this case, a = -√7 / 2, b= √7 / 2,
f(x) = 7- 4x2
A = ∫ba f(x) dx = ∫√7/2-√7/2 (7- 4x2) dx
=[7x - (4/3) x3]√7/2-√7/2
= 7(√7/2) - (4/3)(√7/2)3 - [7(-√7/2) - (4/3) (-√7/2)3]
= 7√7 / 2 - (4/3)(7√7 /8) - [-7√7 /2 - (4/3) (-7√7 /8]
= 7√7 / 2 - 7√7 /6 - [-7√7 /2 + 7√7 /6]
= 21√7 /6 - 7√7 /6 - [-21√7 /6 + 7√7 /6]
= 7√7 /3 - [-7√7 /3]
= 14√7 /3 ≈ 12.35 sq. units