The formula for the volume of a cone is:
V = (1/3) π r2 h
Given:
h = 24 ft.
r = 15 ft.
dV/dt = 20 cu.ft./ min.
Find dh/dt at 18 ft. depth
First find the function r in terms of h'
24•r = 15•h
r = (15/24)•h
r = (5/8) h
Substitute the value of r in the formula:
V = (1/3) π (5/8)2h2 h
V = (25/192)•π•h3
Get the derivative of V with respect to h, we'll have:
dV/dt = 3•(25/192)•π•h2 (dh/dt)
at 18 feet deep:
20 = 3•(25/192)•π•(18)2 (dh/dt)
20 = (24300π / 192)(dh/dt)
dh/dt ≈ 0.05 ft./ min.