Yefim S. answered 10/22/21
Math Tutor with Experience
y' = be-ax - abxe-ax = 0; e-ax(b - abx) = 0; x = 1; e-a(b - ab) = 0; b - ab = 0; b(1 - a) = 0
y(1) = be-a = 6; a = 1; be-1 = 6; b = 6e;
Then y' = 6e1-x - 6xe1-x; y'' = [6e1-x(1 - x)]' = - 6e1-x(1 - x) - 6e1-x = - 6e1-x(2 - x).
So, y''(1) = - 6 < 0. So, nwe have maximum at (1, 6) and a = 1, b = 6e