For ∑(k from 1 to ∞)[24k×e(-0.02k)], a programmable calculator will run term-calculation loops until the summation refuses to budge from 59998.00004 (since values of e(-0.02k) grow extremely tiny). A sample of summations for "k" calculation loops gives:
--k-----------------------------------S--------
100--------------------------35799.78072
200--------------------------54547.15601
300--------------------------58965.82285
700--------------------------59997.25863
1000------------------------59997.99747
1200------------------------59997.99998
1300----------------------- 59998.00003
1327------------------------59998.00004
For accuracy to 1E-6 (that is, 1×10-6 or one-millionth), one would calculate 59998.00004 × 0.999999
equal to 59997.94004 which places k at approximately 834 as the number of terms needed.