The power function u (s) = a sn has the derivative u' (s) = a n sn - 1
Given: u' (3) = a n 3n - 1 = 4
u' (6) = a n 6n - 1 = 8
Then u' (6) / u' (3) = 8 / 4
(a n 6n - 1) / (a n 3n - 1) = 8 / 4
6n - 1 / 3n - 1 = 8 / 4
(6 / 3)n - 1 = 8 / 4
2n - 1 = 8 / 4 = 21
n - 1 = 1
n = 2
After we found n, we substitute its value into u' (3):
u' (3) = a (2) 32 - 1 = 4
a (2) (3) = 4
a = 4 / 6 = 2/3
Finally, n = 2, a = 2/3.