y= ln(x^2 + y^2)
y'= (1/(x^2+y^2)(2x+2yy')= (2/(x^2+y^2)(x+yy')
(x^2+y^2)/2 = (x+yy')/y' = x/y' + y
x/y' = (x^2+y^2)/2 - y= (x^2+y^2 -2y)/2
y'/x = 2/(x^2+y^2-2y)
y'(x,y) = 2x/(x^2 + y^2 -2y)
y'(1,y) = 2/(1+y^2 -2y)
if you treat x^2+y^2 = 1, as a circle, then
x=1 means y=0, and
y'(x,y) = y'(1,0) = 2/(1) = 2
y=ln(x^2+y^2)
e^y = x^2 + y^2
e^0= 1 = 1^2 + (0)^2 = 1
0=ln(1^2+ 0^2)= ln1 = 0
BUT IF, in the unlikely event
you meant find y'(1) = y'(x,1) with y=1 then y=ln(x^2+y^2) becomes 1=ln(x^2+1)
and e^1 = e = x^2+1
x^2 =e-1
x = + or - sqr(e-1)
and y'(sqr(e-1), 1) = 2/(x+y^2-2y)= 2/(sqr(e-1) +1-2)
=2/(sqr(e-1)-1) = about 3.0831= about 3, to nearest integer
or y'(-sqr(e-1), 1) = 2/(-sqr(e-1) -1) = about -0.76
Jethro G.
what number do I then input in the y value to calculate y'(1)?10/07/21