Bradford T. answered 09/10/21
Retired Engineer / Upper level math instructor
I = ∫3x2/√(49+4x2)
let x = (7/2)tan(u)
If x = (7/2) tan(u) then tan(u) = 2x/7 Which makes A=2x, B= 7 and C=√(49+4x2)
dx = (7/2)sec2(u) du
√(49+4x2) = 7√(1+tan2(u)) = 7sec(u)
3x2=(3/4)49tan2(u)
(3/4)49∫tan2(u)(7/2)sec2(u)/(7sec(u))du = (147/8)∫tan2(u)sec(u)du
Hold onto 147/8 for a while
∫tan2(u)sec(u)du = ∫(sec2(u)-1)sec(u)du = ∫sec3(u)du - ∫sec(u)du
∫sec(u)du = ln(tan(u)+sec(u)) Remember this
∫sec3(u)du = sec(u)tan(u)/2 + ln(tan(u)+sec(u))/2
putting both together
sec(u)tan(u)/2 - ln(tan(u)+sec(u))/2
Using the triangle to put it back into terms of x
sec(u) = (√(49+4x2)/7
tan(u) = 2x/7
I = (147/8)[ (√(49+4x2))/7)(2x/7)/2 - (ln(2x/7 + (√(49+4x2))/7))/2] + C
Which can be simplified
side A=2x
side B = 7
side C= √(49+4x2)
(2x/7) = tan(Q)
(2/7) dx =sec2(Q) dQ
(√(49+4x2))/7 = sec(Q)