f(x) = 7x2 - 5x + 8 = 7(x)2 – 5(x) + 8
f(1) = 7(1)2 – 5(1) + 8 = 7 – 5 + 8 = 10
f(1+h) = 7(1+h)2 – 5(1+h) + 8 = 7(1+2h+h2)– 5(1+h) + 8 = 7+14h+7h2– 5–5h + 8 = 7h2 + 9h + 10
[f(1+h)] – [f(1)] = [7h2 + 9h + 10] – [10] = 7h2 + 9h + 10 – 10 = 7h2 + 9h
f(1+h) - f(1) ÷ h = ([f(1+h)] – [f(1)])/( h) = (7h2 + 9h)/( h) = (h)(7h + 9)/( h) = 7h + 9
Therefore, the quotient f(1+h) - f(1) ÷ h can be simplified to: ah + b = 7h + 9 for a = 7 and b = 9