
Dayv O. answered 09/04/21
Caring Super Enthusiastic Knowledgeable Calculus Tutor
f(x,y) =192x³+y²-4xy²
fx=384x-4y2,fxx=384
fy=2y-8xy, fyy=2-8x
fxy=fyx=-8y
fx=0 and fy=0 when (x,y) =(0,0) (and when x=1/4 and y=±√24)
For the region described, only (x,y)= (0,0) applies so it is a critical point
using fxx,fxy,fyx,fyy in Hessian Determinant at point (0,0), find its value>0 and fxx>0
meaning the point (0,0) is a minimum

Adam B.
09/05/21