Note that xmn -> 1 as x -> 1. Therefore
lim(x->1) [x1/n - 1]/[x1/m - 1] = lim(x->1) [(xmn)1/n - 1]/[(xmn)1/m - 1] = lim(x->1) (xm - 1)/(xn - 1)
............................................= lim(x ->1) [(x - 1)(xm-1 + xm-2 + ••• x + 1)]/[(x - 1)(xn-1 + xn-2 + ••• + x + 1)]
............................................= lim(x->1) (xm-1 + xm-2 + ••• + x + 1)/(xn-1 + xn-2 + ••• + x + 1)
............................................= m/n