Tom K. answered 08/28/21
Knowledgeable and Friendly Math and Statistics Tutor
In this problem, A~ is the complement of A
Let A be component 1, B be component 2, and C be component 3
Then, P(AB) = P1P2, P(AC) = P1P3, P(BC) = P2P3, P(ABC) = P1P2P3
P(2 or more components) = P(2 components) or P(3 components) =
P(ABC~) + P(AB~C) + P(A~BC) + P(ABC)
P(AB) = P(ABC) + P(ABC~), so P(ABC~) = P(AB) - P(ABC) = P1P2 - P1P2P3
P(AC) = P(ABC) + P(AB~C), so P(AB~C) = P(AC) - P(ABC) = P1P3 - P1P2P3
P(BC) = P(ABC) + P(A~BC), so P(A~BC) = P(BC) - P(ABC) = P2P3 - P1P2P3
Thus,
P(2 or more components) =
P(ABC~) + P(AB~C) + P(A~BC) + P(ABC) =
P1P2 - P1P2P3 + P1P3 - P1P2P3 + P2P3 - P1P2P3 + P1P2P3 =
P1P2 + P1P3 + P2P3 - 2 P1P2P3
b) A 1 out of 3 system does not function iff all 3 components fail =
(1 - P1)(1 - P2)(1 - P3) = (1 - .5)(1 - .2)(1 - .1) = .5 * .8 * .9 = .36
c) P(k out of n system functions) = P(k or more of n components function) =
∑j=kn C(n, j) pj (1-p)n-j (The sum means the sum from j = k to j=n; normally, we would write this with j=k at the bottom and j = n at the top)