
Dayv O. answered 07/20/21
Caring Super Enthusiastic Knowledgeable Trigonometry Tutor
have from 1/sinx+1/cosx=√2
cosx+sinx=√2sinxcosx=(√2sin2x)/2
squaring,both sides
1+sin2x=(1/2)sin22x
solving quadradic
sin2x=1±√3 , cannot use 1+√3 as sin(angle)<1
sin2x=1-√3
meaing angle 2x is either in quadrant III or IV
sin-1(1-√3)=-.82 or -π-(-.82)=-2.32 radians
so x=-.41 or -.1.16
checking when 1/sinx+1/cosx=√2, x=1.16 (we need this to determine ± in following)
sinx=(1/2)[±√(1+sin2x)±√(1-sin2x)]
cosx=(1/2)[±√(1+sin2x)±√(1+sin2x)]
these two half angle formulas come from adding (for sinx) or subtracting (for cosx)
(sinx+cosx)2=1+sin2x
(sinx-cosx)2=1-sin2x
furthermore
sinx+cosx=±√2sin(x+π/4) sin(-1.16+π/4) is negative, use negative sign
sinx-cosx=±√2sin(x-π/4) sin(-1.16-π/4) is negative, use negative sign
sinx+cosx=±√2cos(x-π/4) cos(-1.16-π/4) is negative, use negative sign
sinx-cosx=±√2cos(x+π/4) cos(-1.16+π/4) is positive, use positive sign
sinx=(1/2)[-√(1+1-√3-)-√(1-(1-√3)]=(1/2)[-√(2-√3)-√√3]
cosx=(1/2)[-√(1+1-√3-)+√(1-(1-√3)]=(1/2)[-√(2-√3)+√√3]
[(1/23)[-√(2-√3)-√√3]]3+ [(1/23)[-√(2-√3)+√√3]]3=-(1/√2)
there is algebra involved
but indeed [(1/23)[-√(2-√3)-√√3]]3+ [(1/23)[-√(2-√3)+√√3]]3=-(1/√2)
that is, when 1/sinx+1/cosx=√2, then sin3x+cos3x=-1/√2
Dayv O.
I like the sin^3 +cos^3 formula, and I think it simplifies the answer I gave. But there is a mistake. sinx*cosx cannot be greater than or even equal to 1. You have sinx*cosx=1.36.07/20/21