
Yefim S. answered 07/10/21
Tutor
5
(20)
Math Tutor with Experience
∫cot62xdx = ∫(csc22x -1)3dx = ∫(csc62x - 3csc42x + 3csc22x - 1)dx = - 1/2∫(csc42x - 3csc22x + 3)d(cot2x) - x + C = -1/2∫(cot42x + 2cot22x + 1 - 3cot22x )d(cot2x) - x + C = - cot52x/10 + cot32x/6 - cot2x/2 - x + C