Let's say ∫f(x)dx = F(x) + C if f(x) is continuous, then ∫ba f(x)dx = F(b) - F(a)
Given:
∫84 f(x)dx = F(8) - F(4) = 32
Evaluate:
∫21 f(4x)dx
u = 4x
du = 4dx
(1/4)du = dx
----
u=4 when x=1, and u=8 when x=2
substitute:
(1/4)∫84 f(u)du = (1/4)[F(8) - F(4)] = (1/4)(32) = 8