
Patrick B. answered 05/30/21
Math and computer tutor/teacher
Defintion:
limit f(x) = L as x-->a
For every E>0 there exists Delta_E such that
L-E < f(x) < L+E when a-Delta_E < x < a+Delta_E
Working backwards:
If
16-E < 10-2x < 16+E
Then
6-E < -2x < 6+E
(1/2)E - 3 > x > (-1/2)E - 3
-3 + (1/2)E > x > -3 - (1/2)E
-3 - (1/2)E < x < -3 + (1/2)E
-3 - E/2 < x < -3 + E/2
=======================================
For E>0, Let Delta_E = E/2
When -3-Delta_E < x < -3+Delta_E
-3-E/2 < x < -3 + E/2
-6 - E < 2x < -6 + E
E+6 > -2x > 6-E
E+16 > 10-2x > 16-E
E+16 > f(x) > 16-E
[end of proof]