We can use this form of exponential function:
A = Pert
Where:
A=Final amount of bacteria
P=The initial amount or size of bacteria
r= rate
t = Time
400 = Pe10r
1500 = Pe40r
From the first equation:
A = 400/e10r
Plugin to the second equations:
1500 = (400/e10r)e40r
1500 = 400e30r
1500/400=e30r
15/4 =e30r
ln (15/4) = 30r
r = ln (15/4)/30
(1)Solve for P:
400 = Pe10(ln(15/4)/30)
400 = Pe(1/3)ln(15/4)
400 = P(15/4)(1/3)
400/(15/4)(1/3)=P
P ≈ 257.47≈ 257 bacteria
(2)Find the doubling period:
2 = (15/4)(t/30)
ln(2) = (t/30)•ln(15/4)
ln(2)/ln(15/4) = t/30
t = 30*ln(2)/ln(15/4) ≈ 15.73 mins.
(3)Our function is: A(t) = 257.47(15/4)t/30
A= 257.47(15/4)60/30)
A≈ 3621 Bacteria
(4)13000=257.47(15/4)t/30
13000/257.47 = (15/4)t/30
ln(13000/257.47) = (t/30)ln(15/4)
ln(13000/257.47)/ln(15/4) =t/30
t = 30•ln(13000/257.47)/ln(15/4)
t = 89.01 mins.
*Note: I just round off on the final answer to make it accurate.