Given:
f(x) = 7x^3 + 2x^2 + 8x - 3 at x = 2
Taylor's polynomial is:
f(c) + f'(c)(x-c) + f''(c)(x-c)2/2 + f'''(c)(x-c)3/6 + ... +f(n)(c)(x-c)n/n!
f(c) = f(2) = 7(2)3+2(2)2 +8(2) -3 = 56+8+16-3=77
f'(x)=21x2+4x+8, f'(c)=f'(2)=21(2)2+4(2)+8=84+8+8=100
f''(x)=42x+4, f''(c)=f''(2)=42(2)+4=84+4=88
f'''(x)=42,f'''(2)=42
f''''(x)=f''''(2)=0
Now plugin to the Taylor's polynomial:
77+100(x-2)+88(x-2)2/2+42(x-2)3/6
=77+100(x-2)+44(x-2)2+7(x-2)3
=∑3n=0 f(n)(2)(x-2)n/n!
To compare with original f(x):
=77+(100x-200)+44(x2-4x+4)+7(x3-6x2+12x-8)
= 77+100x-200+44x2-176x+176+7x3-42x2+84x-56
=-3+8x+2x2+7x3