Tom K. answered 03/28/21
Knowledgeable and Friendly Math and Statistics Tutor
I solve this 3 ways for you.
Brute force using quotient rule
[(8e^8x+8e^-8x)(e^8x+e^-8x)-(8e^8x-8e^-8x)(e^8x-e^-8x)]/(e^8x+e^-8x)^2 =
8[e^8x+e^-8x)^2-(e^8x-e^-8x)^2]/(e^8x+e^-8x)^2 = using that a^2-b^2=(a+b)(a-b)
8[(2e^8x)(2e^-8x)]/(e^8x+e^-8x)^2 =
32/(e^8x+e^-8x)^2
Two alternatives:
recognize that this is tanh(8x), whose derivative is 8sech^2(8x) or 32/(e^8x+e^-8x)^2
Rewrite as 1 - 2e^-8x/(e^8x+e^-8x) = 1 - 2/e^16x+1, whose derivative, now simple to calculate, is
32e^16x/(e^16x+1)^2 = 32/(e^8x+e^-8x)^2