
Yefim S. answered 03/17/21
Math Tutor with Experience
First we get area A = ∫03exdx = ex03 = e3 - e0 = e3 - 1;
Momentum Sy = ∫∫Axdxdy = ∫03y0e^xxdx = ∫03xexdx = (xex - ex)03 = (3e3 - e3) - (0 - e0) = 2e3 + 1
Momentum Sx = ∫∫Aydxdy = ∫03y2/20e^xdx = ∫031/2(e2x - 1)dx = (1/4e2x - 1/2x)03 = (1/4e6 - 3/2) - (1/4) =
e6/4 - 7/4.
Now coordinates of centroid: (xC, yC)
xC = Sy/A= (2e3 + 1)/(e3 - 1) = 2.1572
yC = Sx/A = (e6/4 - 7/4)?(e3 - 1) = 5.1928