πr2h = 600 , h = 600/π · r-2
C = .03 (πr2 + 2πrh) + .05πr2 = .08πr2 + .06πrh
C(r) = .08πr2 + 36r-1
C'(r) = .16πr - 36r-2 = 0
r3 = 36/(.16π) ....
Esther K.
asked 03/17/21A microwaveable cup-of-soup package needs to be constructed in the shape of cylinder to hold 600 cubic centimeters of soup. The sides and bottom of the container will be made of styrofoam costing 0.03 cents per square centimeter. The top will be made of glued paper, costing 0.05 cents per square centimeter. Find the dimensions for the package that will minimize production cost.
Helpful information:
h: height of cylinder,
r: radius of cylinder
Volume of a cylinder: V=πr2h
Area of the sides: A=2πrh
Area of the top/bottom: A=πr2
To minimize the cost of the package:
Radius: _____ cm
Height: _____ cm
Minimum cost: _____ cent
πr2h = 600 , h = 600/π · r-2
C = .03 (πr2 + 2πrh) + .05πr2 = .08πr2 + .06πrh
C(r) = .08πr2 + 36r-1
C'(r) = .16πr - 36r-2 = 0
r3 = 36/(.16π) ....
Get a free answer to a quick problem.
Most questions answered within 4 hours.
Choose an expert and meet online. No packages or subscriptions, pay only for the time you need.