Michael K. answered 03/12/21
PhD professional for Math, Physics, and CS Tutoring and Martial Arts
Looking at the first function ...
f(t) = e5t-π * sqrt(2 - t)
Using the product rule... (u(x) * v(x))' = u'(x) * v(x) + u(x) * v'(x)
define u(t) = e5t-π
define v(t) = sqrt(2 - t)
u'(t) = 5e5t-π
v'(t) = -1/sqrt(2 - t)
Therefore f'(t) = 5e5t-π * sqrt(2 - t) - e5t-π / sqrt(2 - t)
Simplifying --> f'(t) = e5t-π / sqrt(2 - t) * [ 5*(2 - t) - 1 ]
f'(t) = e5t-π / sqrt(2 - t) * [ 9 - 5t ]
Looking at the second function...
f(x) = ax2 + b / (cx3 - k)
Using the quotient rule (u(x)/v(x))' = [ u'(x) * v(x) - u(x) * v'(x) ] / (v(x))2
define u(x) = ax2 + b
define v(x) = cx3 - k
u'(x) = 2ax
v'(x) = 3cx2
Therefore f'(x) = [ 2ax * (cx3 - k) - 3cx2 * (ax2 + b) ] / (cx3 - k)2
f'(x) = (2acx4 - 2akx - 3acx4 - 3bcx2) / (cx3 - k)2
f'(x) = -x * (acx3 + 3bcx + 2ak) / (cx3 - k)2