Yefim S. answered 03/03/21
Math Tutor with Experience
Domain: x > 0 and 7 - lnx > 0; lnx < 7; so, 0 < x < e7;
(a) f'(x) = 1/(7 - lnx)·(- 1/x) = 1/[x(lnx - 7). So we have no critical points becousse x = 0 and lnx - 7 = 0; lnx = 7 x = e7 not in domaiin. So, fr'(x) < 0 and interval (0, e7), which is all domain f(x) decreasing.
So, f(x) never increasing
(b) No local extrema
(c) f''(x) [x-1(lnx - 7)-1]' = -x-2(lnx - 7)-1 - x-1(lnx - 7)-2·1/x = - 1/[x2(lnx - 7)] - 1/[x2(lnx - 7)2] =
(- lnx + 7 - 1)/[x2(7 - lnx)2] = 0; - lnx + 6 = 0; lnx = 6 and x = e6; - lnx + 6 > 0; x < e6 but x > 0
So, on interval (0, e6) graph concave up; onterval (e6, e7) graph concave down; f(e6) = ln(7 - ln(e6)) =
ln(7 - 6) = 0. So, (e6, 0) is inflection point