Patrick B. answered 02/21/21
Math and computer tutor/teacher
separation:
dy/(y+2)^2 = [18 dx]/(1-3x)^2
integrates both sides
U = y+2 ---> dU = dy
V = 1-3x --> dV = -3 dx
dU/ U^2 = -6 dV/ V^2
U^(-2) dU = -6 V^(-2) dV
-U^(-1) = 6 V^(-1) + c
-1/(y+2) = 6/(1-3x) + c
Multiplies by (y+2)(1-3x):
3x-1 = 6(y+2)+ c(1-3x)(y+2)
3x-1 = [6 + c(1-3x)] (y+2)
(3x-1)/ [ 6 + c(1-3x)] = y+2
(3x-1)/[6 + c(1-3x)] - 2 = y
(3x-1)/[6 + c - 3cx] - 2 = y
Applying the intitial condition:
2/[ 6 +c - 3c] - 2 = -4
2/[6 - 2c] - 2 = -4
1/[3 - c] - 2 = -4
1/[3-c]= -2
1 = 2(c-3)
1 = 2c - 6
7 = 2c
c = 7/2
Then solution is
y = [(3x-1)/(19/2 - (21/2)x)] - 2