f(x) = 3 sin x + 4 xx
f’(x) = (3 sin x + 4 xx)’
= (3 sin x)’ + (4 xx)’ term by term derivative
(sin x)' = cos x
= 3 cos x + 4 [(eln x)x]’ x = eln x [1]
= 3 cos x + 4 (ex ln x)’ (ab)c = abc [2]
= 3 cox x + 4 (ex ln x)(x ln x)’ (eu)’ = eu u’ (chain rule)
= 3 cos x + 4 (eln x)x (x ln x)’ according to [2]
= 3 cos x + 4 xx (x ln x)’ according to [1]
= 3 cos x + 4 xx [(1) ln x + x (1/x)] (fg)’ = f’g + fg’ (product rule)
(ln x)’ = 1/x
= 3 cos x + 4 xx (ln x + 1)
= 3 cos x + 4 [(eln x)x]’ x = eln x [1]
= 3 cos x + 4 (ex ln x)’ (ab)c = abc [2]
= 3 cox x + 4 (ex ln x)(x ln x)’ (eu)’ = eu u’ (chain rule)
= 3 cos x + 4 (eln x)x (x ln x)’ according to [2]
= 3 cos x + 4 xx (x ln x)’ according to [1]
= 3 cos x + 4 xx [(1) ln x + x (1/x)] (fg)’ = f’g + fg’ (product rule)
(ln x)’ = 1/x
= 3 cos x + 4 xx (ln x + 1)
F’(3) = 3 cos 3 + (4)(33)(ln 3 + 1)
= 3 cos 3 + 108 (1 + ln 3)
≅ 223.68