use chain rule to find derivative
let U= 2 sin(x). Then du/dx = 2 coa(x)
then y = eu. So dy/du = eu
and therefore, by cahin rule: dy/dx = dy/du * du/dx
Dy/dx = e2sin(x)(2cos(x))= 2 cos(x) e2 sin(x)
use product rule on dy/dx: (uv)’ = uv’ + vu’, where
u= 2 cos(x) & v= e2sin(x)
hence
d2/dx2 = 2 cos(x) { 2 cos(x) e2 sin(x) } - 2 sin(x) e2sin(x)
= 2 e2 sin(x) {2cos2(x) - sin(x)