Given; y = x^3 + 7xy + y^2 = 19
d/dx [ x^3 + 7xy + y^2 ] = d/dx [19]
3x^2 + 7{ y + xy' } + 2yy' = 0
3x^2 + 7y + 7xy' + 2yy' = 0
Solve for y' in terms of x and y
7xy' + 2yy' = - 3x^2 - 7y
y'(7x + 2y) = - 3x^2 - 7y
y ' = [ -3x^2 - 7y ] / [ 7x + 2y ]
When: (x,y) = (1,2)
y ' = [ -3x^2 - 7y ] / [ 7x + 2y]
y ' = [ -3 - 14 ] / [ 7 + 4 ]
y ' = [-17] / [ 11 ]
y' = -17/11
CHECK: (x,y) = (1,2) and y' = -17/11
3x^2 + 7y + 7xy' + 2yy' = 0
3(1)^2 + 7(2) - 7(1)(17/11) - 2(2)(17/11) = 0
3 + 14 - 119/11 - 68/11 = 0
17 - 187/11 = 0
17 - 17 = 0
0 = 0 TRUE