Yefim S. answered 12/27/20
Math Tutor with Experience
Let e1 = (1, 0, 0), e2 = (0, 1,0) and e3 = (0,0,1) basis in R3. Let express this bases as linear combination of'
v1 = (1, 2, 1); v2 = (2, 9, 0) and v3 = (3, 3, 4);
e1 = av1 + bv2 + cv3 | e2 = dv1 + ev2 + fe3 | e3 = kv1 + lv2 + mv3
a + 2b +3c = 1 a = - 36 | d + 2e + 3f = 0 d = 8 | k + 2l + 3m = 0 k = 21
2a + 9b + 3c = 0 b = 5 | 2d + 9e + 3f = 1 e = - 1 | 2k + 9l + 3m = 0 l = - 3
a + 4c = 0 c = 9 | d + 4f = 0 f = - 2 | k + 4m = 1 m = - 5
e1 = -36v1 + 5v2 + 9v3; e2 = 8v1 - v2 - 2v3
T(e1) = - 36(1, 0) + 5(1,1) + 9(0,1) = (- 31, 14)
T(e2) = 8(1,0) - (1,1) - 2(0,1) = (7,- 3)
T(e3) = 21(1,0) - 3(1,1) - 5(0,1) = (18, - 8)
T(x1, x2, x3) = [(- 31 14) (7 - 3) (18 - 8)][x1 x2 x3] = [(- 31x1 + 7x2 + 18x3) (14x1 - 3x2 - 8x3)]
T is 2X3 matrix.
At last:
T(7, 13, 7) = [(- 31·7 + 7·13 + 18·7) (14·7 - 3·13 - 8·7)] = [0 3]