Yefim S. answered 12/19/20
Math Tutor with Experience
Equation of surface (S) is:x/1 - y/2 + z/4 = 1; From here z = 4 - 4x + 2y
∫∫(S)xdS = ∫∫(D)x(1 + (∂z/∂x)2 + (∂z/∂y)2)1/2dxdy.
Here (D) is projection of S) on xy coordinate plane; so (D) is triangle with vertices (1,0,0), (0, - 2, 0) and (0,0,0). ∂z/∂x = - 4, ∂z/∂y = 2. In (D) 0 ≤ x ≤ 1, - 2 ≤ y ≤ 0.
Now we have ∫∫(S)xdS = ∫∫(D)x(1 + (- 4)2 + 22)1/2dxdy = √21∫-20dy∫01xdx = √21y-20x2/201 = √21