
William W. answered 12/16/20
Experienced Tutor and Retired Engineer
You left out parentheses but I'm guessing this is:
If so, use the quotient rule to find f '(x). As a reminder, if f(x) = u/v then f '(x) = (u'v - uv')/v2
u = x
u' = 1
v = 1 + x2
v' = 2x
v2 = (1 + x2)2
So:
f '(x) = [(1)(1 + x2) - (x)(2x)]/(1 + x2)2
f '(x) = [1 + x2 - 2x2)]/(1 + x2)2
f '(x) = (1 - x2)/(1 + x2)2
For f ''(x), again use the quotient rule. This time:
u = 1 - x2
u' = -2x
v = (1 + x2)2
v' = 2(1 + x2)(2x) = 4x(1 + x2) = 4x + 4x3
v2 = (1 + x2)4
So:
f ''(x) = [(-2x)(1 + x2)2 - (1 - x2)(4x + 4x3)]/(1 + x2)4
f ''(x) = [(-2x)(1 + 2x2 + x4) - (4x + 4x3 - 4x3 - 4x5)]/(1 + x2)4
f ''(x) = [-2x - 4x3 - 2x5 - (4x - 4x5)]/(1 + x2)4
f ''(x) = (-2x - 4x3 - 2x5 - 4x + 4x5)/(1 + x2)4
f ''(x) = (2x5 - 4x3 - 6x)/(1 + x2)4
f ''(x) = 2x(x4 - 2x2 - 3)/(1 + x2)4
f ''(x) = 2x(x2 - 3)(x2 + 1)/(1 + x2)4
f ''(x) = 2x(x2 - 3)/(1 + x2)3