John C. answered 12/11/20
The Problem Solver
sin (a - b) = sin a cos b - cos a sin b, so we have to find the values of sin a, sin b, and cos b.
a is in the second quadrant, so sin a is positive
sin a = √(1 - cos2 a) = √(1 - 9/16) = √7 / 4
b is in the third quadrant, so both sin b and cos b are negative.
1 + tan2 b = sec2 b, so sec2 b = 9 / 4
cos2 b = 4 / 9, so cos b = -2 / 3
sin b = cos b * tan b = -2 / 3 *√5 / 2 = - √5 / 3
sin (a - b) = sin a cos b - cos a sin b
= √7 / 4 * (-2 / 3) - ( -3 /4) * (- √5 / 3)