Hi,
x(u,v)=u2+2u, y(u,v)=3v-2u, z(u,v)=6v-10 at point (8,14,2).
First: ∂x/∂u = 2u + 2 ∂y/∂u = -2 ∂z/∂u = 0
∂x/∂v = 0 ∂y/∂v = 3 ∂z/∂v = 6
ru = ∂x/∂u i + ∂y/∂u j + ∂z/∂u k = (2u + 2) i -2 j + 0
rv = ∂x/∂v i + ∂y/∂v j + ∂z/∂v k = 0 i + 3j + 6 k
ru . rv = i j k
2u +2 -2 0
0 3 6
after you find normal vector you will have : ( -12) i - ( 12u + 12) j + (6u + 6) k
x = u2+2u = 8 -----> u = -4, 2
y = 3v-2u = 14 ------> when u = -4 v = 2 and u = 2 v= 6
( -12) i - ( 12u + 12) j + (6u + 6) k -----> when u = 2 you have -12i - ( 12*2 + 12 ) j + ( 6*2 + 6 ) k = -12i -36j + 18k
Now we know (r-a) . n = 0-------> point is (8,14,2) ( x-8) ( -12) + ( y-14) (-36) + (z-2)(18) = 0 2x + 6y -3z =94
one more time you need to solve when u = -4
I hope it is useful,
Minoo