Yefim S. answered 01/05/21
Math Tutor with Experience
Normal vector to this plane is N = <1, - 1, 2> Let we take any vector M = <x, y, z>.
Then projection vector of M on given plane is P = M - [(M•N)/(N•N)]N = <x, y, z> - (x - y + 2z)/6·• <1, - 1, 2> =
<x - (x - y + 2z)/6, y + (x - y + 2z)/6, z - (x - y + 2z)/3 > = <(5x + y - 2z)/6, (x + 5y + 2z)/6, (- x + y + z) /3>.
Now we can find images of ortogonal basic in R3.
T(e1)= T(<1, 0, 0>) = <5/6,1/6, - 1/3>; T(e2) = T(<0, 1, 0>)= <1/6, 5/6, 1/3>
T(e3) = T(<0, 0, 1>) = <- 1/3, 1/3, 1/3>. I5/6 1/6 -1/3I
So matrix A of this linear transformation is A = I1/6 5/6 1/3I
I-1/3 1/3 1/3I