Tom K. answered 11/08/20
Knowledgeable and Friendly Math and Statistics Tutor
dx/dt = 1 - cos(t)
dy/dt = sin(t)
We use I[a, b] for the integral from a to b and E[a,b] for the evaluation from a to b.
I[0, 2π] √(1 - cos(t))2 + (sin(t))2) dt =
I[0, 2π] √(1 - 2 cos(t)+ cos2(t) + sin2(t)) dt =
I[0, 2π] √(1 - 2 cos(t)+ cos2(t) + sin2(t)) dt =
I[0, 2π] √(2 - 2 cos(t)) dt = (recalling that √(1 - cos(t))/2)
I[0, 2π] 2 |sin t/2| dt = ,as sin(t/2) >= 0 on [0, 2π]
I[0, 2π] 2 sin t/2| dt =
-4 cos t/2 E[0,2π] =
4 --4 = 8