Assuming that this is your integral: ∫x3√(4+x2) dx
Let's take u = x2
This means that du = 2x dx and the dx = du / (2x)
Substituting and simplifying:
∫u*x√(4+u)*(1/(2x)) du
(1/2) * ∫u√(4+u) du
Now let's say that s = 4 + u. Then u = s - 4 and ds = du.
(1/2) * ∫(s-4)√(s) ds
Let's distribute s-4.
(1/2) * ∫(s√(s)-4√(s)) ds
(1/2) * ∫(s3/2-4√(s)) ds
So our integral is:
(1/2) * ((2/5)s5/2 - 4*(2/3)*s3/2) + C
(1/2) * ((2/5)s5/2 - (8/3)*s3/2) + C
(1/5)s5/2 - (4/3)*s3/2 + C
s = 4 + u and u = x2 so s = 4 + x2
So our integral is:
(1/5)(4 + x2)5/2 - (4/3)*(4 + x2)3/2 + C