Tom K. answered 09/29/20
Knowledgeable and Friendly Math and Statistics Tutor
We let x = 3 tan u, so dx = 3 sec^2 u
Then, ∫3 sec^2 u/(9tan^2u+9)^3 =
∫1/243 sec^-4udu = ∫ 1/243 cos^4 u du
cos^4 u = ((cos 2 u + 1)/2)^2 = 1/4 cos^2 2u + 1/2 cos 2u + 1/4 = 1/4 (cos 4u + 1)/2 + 1/2 cos 2u + 1/4 =
1/8 cos 4u + 1/2cos 2u + 3/8
Then, ∫1/243 cos^4u du = 1/243 ∫1/8 cos 4u + 1/2cos 2u + 3/8 du =
1/243 (1/32 sin 4u + 1/4 sin 2u + 3/8 u + C)
As x = 3 tan u, u = arctan(x/3)
Then, you may write the integral as
1/243 (1/32 sin(4 arctan(x/3)) + 1/4 sin (2 arctan(x/3)) + 3/8 arctan(x/3) + C)