
William W. answered 09/05/20
Experienced Tutor and Retired Engineer
The limit definition is:
f(x) = 2x2 + 5x + 3
f(x + h) = 2(x + h)2 + 5(x + h) + 3 = 2(x2 + 2xh + h2) + 5x + 5h + 3 = 2x2 + 4xh + 2h2 + 5x + 5h + 3
So f(x + h) - f(x) = 2x2 + 4xh + 2h2 + 5x + 5h + 3 - (2x2 + 5x + 3) = 2x2 + 4xh + 2h2 + 5x + 5h + 3 - 2x2 - 5x - 3 = 4xh + 2h2 + 5h = h(4x + 2h + 5)
Then [f(x + h) - f(x)]/h = h(4x + 2h + 5)/h = 4x + 2h + 5
And the limit as h approaches zero of 4x + 2h + 5 = 4x + 5
So f '(x) = 4x + 5