Alex E. answered 08/30/20
I’ve assisted hundreds of repeat students over the past ten years
Isn’t it fun to see different ways to solve a problem! Interested in another? How about using the equivalent exponential statement to apply differentiation to and avoid differentiation of the logarithmic form all together. Sound fun?
Okay first recall that
logB(N) = E If and only if BE=N.
Next recall
ln(N) = loge(N).
So
f(x) = loge((e3x+2)/e5x) ⇔ ef(x) = (e3x+2)/e5x
or
ef(x) = e-2x + 2e-5x
⇒ d / dx (ef(x)) = d / dx (e-2x + 2e-5x)
Next recall d / dx (eu(x)) = eu(x) * d / dx (u(x)).
Therefore,
d / dx (ef(x)) = d / dx (e-2x + 2e-5x)
⇒ ef(x) d / dx (f(x)) = -2e-2x -10e-5x.
⇒ d /dx (f(x)) = ( -2e-2x -10e-5x ) / ef(x).
But we have an equivalent form of ef(x) = e-2x + 2e-5x.
Hence d / dx (f(x)) = f’(x) = (-2e-2x -10e-5x) / (e-2x + 2e-5x).
The art of math is in the path.