C H. answered 08/16/20
Patient and Knowledgeable Math Tutor
Yes, it is about implicit derivative.
For ∂z/∂x part, you need to take derivative with respect to x at both sides.
The left-hand side is
∂(x2sin(2y-5z))=∂(x2)sin(2y-5z)+x2∂(sin(2y-5z)).
Here we used the product rule. Then, we have
LHS=2x∗sin(2y-5z)+x2cos(2y-5z)∗(-5∂z/∂x)
=2x∗sin(2y-5z)-5x2cos(2y-5z)∗(∂z/∂x).
Here we used the chain rule and ∂y/∂x=0, namely ∂(sin(2y-5z))=cos(2y-5z)∗∂(2y-5z)=cos(2y-5z)∗(-5∂z/∂x).
The right-hand side is similar. We have
∂(1+ycos(6zx))=∂(1)+∂(ycos(6zx))=∂(y)∗cos(6zx)+y∗∂(cos(6zx))
=y∗(-sin(6zx))∗∂(6zx)=y∗(-sin(6zx))∗6(∂(z)∗x+z∗∂(x))
=y∗(-sin(6zx))∗6((∂z/∂x)∗x+z)
=-6y∗sin(6zx)∗((∂z/∂x)∗x+z)
After the computation, we have
2x∗sin(2y-5z)-5x2cos(2y-5z)∗(∂z/∂x)=-6y∗sin(6zx)∗((∂z/∂x)∗x+z).
To find ∂z/∂x, we just need the simplify the above equation and solve for ∂z/∂x. We move the terms containing ∂z/∂x to the LHS and the rest to the RHS,
6y∗sin(6zx)∗(∂z/∂x)-5x2cos(2y-5z)∗(∂z/∂x)=-2x∗sin(2y-5z)-6y∗sin(6zx)∗z.
Factor out ∂z/∂x,
(6y∗sin(6zx)-5x2cos(2y-5z))*(∂z/∂x)=-2x∗sin(2y-5z)-6y∗sin(6zx)∗z,
and divide both sides by the factor in front of ∂z/∂x,
∂z/∂x = (-2x∗sin(2y-5z)-6y∗sin(6zx)∗z)/(6y∗sin(6zx)-5x2cos(2y-5z)).
You can try the same thing to find ∂z/∂y.
Aktug Y.
Thanks a lot for answering.08/16/20