
William W. answered 07/28/20
Experienced Tutor and Retired Engineer
The standard power reduction identity for sine is:
sin2(x) = (1 - cos(2x))/2
First let's square both sides:
[sin2(x)]2 = [(1 - cos(2x))/2]2
sin4(x) = (1 - 2cos(2x) + cos2(2x))/4
Then multiply both sides by 13 to get:
13sin4(x) = 13/4[1 - 2cos(2x) + cos2(2x)]
(A) 13sin4(x) = 13/4 - 13/2cos(2x) + 13/4cos2(2x)
The standard power reduction identity for cosine is:
cos2(x) = (1 + cos(2x))/2
We can multiply both sides by 13/4 to get:
13/4cos2(x) = 13/4(1 + cos(2x))/2
13/4cos2(x) = 13/8(1 + cos(2x))
13/4cos2(x) = 13/8 + 13/8cos(2x)
Then, since the expression in (A) above has 13/4cos2(2x), we can double the arguments to get:
13/4cos2(2x) = 13/8 + 13/8cos(4x)
Substituting this expression into (A) we get:
13sin4(x) = 13/4 - 13/2cos(2x) + 13/8 + 13/8cos(4x) then, combining 13/4 with 13/8 we get:
13sin4(x) = 39/8 - 13/2cos(2x) + 13/8cos(4x)