f(x,y) = x3 - 3y2 +3xy - 3y
First Partial Derivatives:
fx = 3x2 + 3y
fy = -6y + 3x - 3
3x2 + 3y = 0 -6y + 3x - 3 = 0
3y = -3x2 -6(-x2) + 3x - 3 = 0
y = -x2 6x2 + 3x - 3 = 0
Critical Points: y = -1, - 1/4 x = -1, 1/2
Second Partial Derivatives:
(-1, -1) (1/2 , -1/4)
fxx= 6x -6 3
fxy = 3 3 3
fyy = -6 -6 -6
D(-1 , 1) = fxx * fyy - fxy = -6 * -6 - 3 = 36 - 3 = 33
33 > 0 and -6 < 0. Therefore, the critical point (-1, -1) is a local maxima.
D( 1/2, -1/4) = fxx * fyy - fxy = 3 * -6 - 3 = -18 - 3 = -21
-21 < 0. Therefore the critical point (1/2, -1/4) is a Saddle Point.