
Yefim S. answered 07/18/20
Math Tutor with Experience
r'(t) = ∫(2i + cos(t)j + e2tk)dt = 2ti + sintj +1/2e2tk + C1. To get constant C1 we have initial condition: r'(0) = i + 3j. So, r'(0) = 2·0i + sin0j + 1/2e2·0k + C1 = i + 3j. From here C1 = i + 3j - 1/2k. Because r'(t) = (2t + 1)i +(sint + 3)j + (1/2e2t - 1/2)k. Now r(t) = ∫[(2t + 1)i +(sint + 3)j + (1/2e2t - 1/2)k]dt = (t2 + t)i + (3t - cost)j + (1/4e2t - 1/2t)k + C2. To get Cconstant C2 we use second initial condition: r(0) = 3i + k.
So, r(0) = - j + 1/4k + C2 = 3i + k. From this C2 = 3i + j + 3/4k.
Now r(t) = (t2 + t + 3)i + (3t - cost + 1)j + 1/4(e2t - 2t + 3)k