Let A be the area of the square, A1 is the upper region, A3 is the lower region and A2 is the middle region.
A = 42 = 16 sq. inch
A1 = A3
A3 is a 30-60-90 triangle. To get the length of the shorter leg (y) it will be:
y√3 =4
y =4/√3
y = (4√3) / 3.
Therefore the slope of the line f(x) is m = ((4√3) / 3)/4 = (√3) / 3 with a y-intercept of 0.
Using the slope-intercept form of linear equation we have:
f(x) = (√3 / 3)x
Using definite integral:
4
A3 = ∫ (√3 / 3)x dx
0
A2 = A - (A1+A3). Since A1 = A3
A2 = A - (A3+A3)
A2 = A - 2A3
4
A2 = 16 - 2 ∫ (√3 / 3)x dx
0
4
A2 = 16 - 2 [(√3 / 6)x2]
0
A2 = 16 - 2 [(16√3) / 6 - 0]
A2 = 16 - (16√3) / 3
A2 = 16 - (16√3) / 3
A2 = (48-16√3) /3 ≈ 6.762 sq. in.

Joel L.
07/13/20