
William W. answered 07/07/20
Experienced Tutor and Retired Engineer
Using the quotient rule: y' = (u'v - uv')v2 where:
u = ln(4x)
v = x6
u' = 4/4x = 1/x
v' = 6x5
v2 = x12
y' = [(1/x)(x6) - (ln(4x))(6x5)]/x12 = (x5 - 6x5ln(4x))/x12 = x5(1 - 6ln4x))/x12 = (1 - 6ln(4x))/x7
y'' (also by the quotient rule) = (u'v - uv')v2 where:
u = 1 - 6ln(4x)
v = x7
u' = -24/4x = -6/x
v' = 7x6
v2 = x14
y'' = [(-6/x)(x7) - (1 - 6ln(4x))(7x6)]/x14
y'' = [-6x6 - (7x6 - 42x6ln(4x))]/x14
y'' = (-13x6 + 42x6ln(4x))/x14
y'' = x6(-13 + 42ln(4x))/x14
y'' = (-13 + 42ln(4x))/x8
y'' = (42ln(4x) - 13)/x8