
William W. answered 06/26/20
Experienced Tutor and Retired Engineer
a) h'(2) = 4f '(2) - 3g'(2) [you can plug in the associated numbers]
b) h'(2) = f '(2)g(2) + f(2)g'(2)
c) I'm assuming this problem say h(x) = f(x)/g(x). If so, h'(2) = ( f '(2)g(2) - f(2)g'(2))/(g(2))2
d) Again, I'm assuming this problem say h(x) = g(x)/(1+f(x)). If so, h'(2) = ( g'(2)(1+f(2)) - g(2)f '(2))/(1+f(2))2