Mark M. answered 05/31/20
Retired math prof. Calc 1, 2 and AP Calculus tutoring experience.
3∫[cosx / (sin2x + sinx)]dx
Let u = sinx. Then du = cosxdx
So, the integral can be expressed as 3∫ 1 / (u(u+1)) du
Using partial fraction decomposition, 1 / (u(u+1)) = A/u + B/(u+1)
A(u+1) + Bu = 1 So, (A+B)u + A = 0u + 1. Therefore, A = 1 and B = -1.
Our integral now becomes: 3∫[1/u - 1/(u+1)]du = 3 ln l u / (u+1) l + C = 3ln l sinx / (sinx + 1) l + C