Tom K. answered 05/27/20
Knowledgeable and Friendly Math and Statistics Tutor
SA of a box is 2lw + 2lh + 2wh. Without a lid, we lose an lw, and SA = lw + 2lh+2wh. length is 3 times width, so l = 3w. Then, we haveSA = 3w(w) + 2(3w)h + 2wh = 3w^2 + 8wh
Volume = lwh = 735; (3w)wh = 735; 3w^2h = 735
minimize 3w^2 + 8wh subject to 3w^2h = 735. substitute h = 735/3w^2 = 245/w^2.
minimize 3w^2 +8w(245/w^2) = 3w^2 + 1960/w
We do this by taking the derivative.
6w - 1960/w^2 = 0
w^3 = 1960/6
w = (1960/6)^(1/3) = 6.88707703165523
SA = 3(1960/6)^(2/3) + 1960/(1960/6)^(1/3) = 9(1960/6)^(2/3) = 426.886469862238 = 426.89