
Patrick B. answered 05/27/20
Math and computer tutor/teacher
a)
Vertical asymptote at x=0
Solutions: x+1 = 0
x = -1
Sign table:
interval sample test value x f(x)
===============================================
x<-1 -2 -1/4
-1<x<0 -1/2 2
x>0 1 2
f'(x) = [x^2 - (2x)(x+1)]/ (x^4)
= [ x^2 - 2x^2 - 2x]/ (x^4)
= [ -x^2 - 2x]/x^4
= -x(x+2)/x^4
= -(x+2)/x^3
slopes are vertical at x=0
Critical points: x=-2 ---> (-2,-1/4)
Sign table:
interval sample test value x f(x)
=================================================
x<-2 -3 1/9
-2<x<0 -1 1
x>0 1 -3
decreases (-infinity,-2)
increases (-2,0)
decreases (0,infninity)
absolute max (-2, -1/4)
(B)
f(x) = (x^2-1)(x+1)^2
= (x+1)(x-1)(x+1)^2
= (x+1)^3(x-1)
Solutions:
x=-1 and x=1
y-intercept (0,-1)
sign chart
interval sample test value x f(x)
x<-1 -2 3
-1<x<1 0 -1
x>1 2 27
f'(x) = (x+1)^3 + 3(x+1)^2(x-1)
= (x+1)^2 [ x+1 + 3(x-1)]
= (x+1)^2 (4x-2)
= 2(x+1)^2 (2x-1)
horizontal tangents at x=-1 and x=1/2
sign chart
interval sample test value x f(x)
x<-1 -2 -10
-1 < x < 1/2 0 -2
x>1/2 1 48
decreases from (-infinity,1/2)
increases from (1/2,infinity)
f(1/2) = (1/4 - 1)(3/2)^2
= (-3/4)(9/4)
= -27/16
absolute min at (1/2,-27/16)