Patrick B. answered 05/09/20
Math and computer tutor/teacher
Partial Fraction decomposition
x^4 + 81 / [x(x^2+9)^2] = A/x + Bx+C/(x^2+9) + (Dx+E)/(x^2+9)^2
Multiplies by LCD = x(x^2+9)^2
(x^4+81) = a(x^2+9)^2 + (Bx+C)(x)(x^2+9) + x(Dx+E)
= a (x^4 + 18x^2 + 81) + (Bx+C) (x^3 + 9x) + (Dx^2+ex)
= a x^4 + 18a x^2 + 81a + (Bx^4 + Cx^3 + 9bx^2 + 9cx) + Dx^2 + ex
= (A+b)x^4 + Cx^3 + (18a + 9b +d) x^2 + (9c+e)x + 81a
a+b = 1
c = 0
18a+9b + d = 0
9c+e = 0 ---> e = 0
81a = 81 ---> a = 1 ---> b = 0
d = -18
1/x + (-18x)/(x^2+9)^2
check :
[(x^2+9)^2 - 18x^2 ]/ x(x^2+9)^2 =
[ x^4 + 18x^2 + 18 - 18x^2] / x(x^2+9)^2
[ x^4 + 18]/x(x^2+9)^2
Yes, the partial fraction decomposition is correct
Integrates each piece:
*********************************************
integral (1/x) = ln x
*************************************************************************
-18 integral x/(x^2+9)^2 U = x^2+9 --> dU = 2x dx ---> (1/2) dU = x dx
-9 integral dU / U^2
-9integral U^(-2) dU
-9 -U^-1
9/ U
9/(x^2+9)
check by diff:
9(x^2+9)^(-1) =
-9(x^2 + 9)^(-2) (2x) =
-18x/(x^2+9)^2
yes, the anti-derivative is correct
*********************************************************
ln x + 9/(x^2+9) + c