
Yefim S. answered 05/04/20
Math Tutor with Experience
S = 2π∫12xsqrt(1 + (f'(x))2)dx. Change of variables tanθ = 3x2, sec2θdθ = 6xdx, xdx = sec2θdθ/6 and we get
S = π/3∫sec2θsqrt(1 + tan2θ)dθ ∫=π/3∫sec3θdθ from θ = tan-13 to θ = tan-112. Using integral table we get S = π/6(secθtanθ + ln(secθ + tanθ)) fro tan-13 to tan-112.
tan(tan-13) = 3, tan(tan-112) = 12;
sec(tan-13) = sqrt(1 + 32) = sqrt(10)
sec(tan-112) = sqrt(1 + 122) = sqrt(145)
S = π/6(((12sqrt(145) + ln(12 + sqrt(145)) - (3sqrt(10)+ ln(3 + sqrt(10))) ≈ 71.41